Asebter amenzawi : Tameẓla gar ileqman
Ajerriḍ 1: | Ajerriḍ 1: | ||
− | + | Aheyyi i Teqbuct n Umaḍal n 2018: Ahmed Kashi yettwaɣ | |
− | + | LEZZAYER TAMANEƔT – Amarir agraɣlan adzayri Charlton Ahmed Kashi, ay yettwaɣen, ur yettekkay ara deg snat-nni n temliliyin n tammidwa (wuddiyya) ara turar teɣlamt taɣelnawt n Lezzayer mgal Ginya (9 Tubeṛ) d Sinigal (13 Tubeṛ) deg usarir n 5 Yulyu, ɣef wakken ay aɣ-d-txebber Tfidiṛalit Tadzayrit n Tcirt n Uḍar. | |
− | + | Alemmas n unrar n teɣlamt (lfariq) taɣelnawt yenna-as usleɣmay (lmuderrib) aɣelnaw Christian Gourcuff d akken ur yettekkay ara deg wurar n uheyyi deffir ma ẓran-t yimsujjiyen (ṭṭebba) ay t-yufan ur yezmir ara ad yurar. | |
− | + | Kashi yezgel yagi tadwilt tamezwarut n usleɣmu (aderreb) n teɣlamt taɣelnawt ay d-yellan ass n letniyen deg Wammas atekni aɣelnaw n Tfidiṛalit Tadzayrit n Tcirt n Uḍar deg Sidi Musa. | |
− | + | Seg yidis-nnes, amḥaddi Mehdi Zeffane (ay yetturaren deg Rennes, deg Fṛansa) yezgel timlilit taneggarut ay turar teɣlamt-nnes mgal AS Monaco (1 ɣer 1) ass n lḥedd. Timlilit-a d aḥric seg telɣuɣa n Fṛansa n Temɣunt 1. Zeffane ur yurar ara imi ay yettwaɣ, ula d netta yerna ula d netta ur izemmer ara ad yurar deg snat-nni n temliliyin n tammidwa ara turar Lezzayer deg wussan ay d-yetteddun. | |
− | + | ||
− | + | ||
− | + | ||
− | + |
Tasiwelt n wass 15:22, 7 Tuber 2015
ⴰⵀⴻⵢⵢⵉ ⵉ ⵜⴻⵇⴱⵓⵛⵜ ⵏ ⵓⵎⴰⴹⴰⵍ ⵏ 2018: ⴰⵀⵎⴻⴷ ⴽⴰⵙⵀⵉ ⵢⴻⵜⵜⵡⴰⵖ
ⵍⴻⵣⵣⴰⵢⴻⵔ ⵜⴰⵎⴰⵏⴻƔⵜ – ⴰⵎⴰⵔⵉⵔ ⴰⴳⵔⴰⵖⵍⴰⵏ ⴰⴷⵣⴰⵢⵔⵉ ⵛⵀⴰⵔⵍⵜⵧⵏ ⴰⵀⵎⴻⴷ ⴽⴰⵙⵀⵉ, ⴰⵢ ⵢⴻⵜⵜⵡⴰⵖⴻⵏ, ⵓⵔ ⵢⴻⵜⵜⴻⴽⴽⴰⵢ ⴰⵔⴰ ⴷⴻⴳ ⵙⵏⴰⵜ-ⵏⵏⵉ ⵏ ⵜⴻⵎⵍⵉⵍⵉⵢⵉⵏ ⵏ ⵜⴰⵎⵎⵉⴷⵡⴰ (ⵡⵓⴷⴷⵉⵢⵢⴰ) ⴰⵔⴰ ⵜⵓⵔⴰⵔ ⵜⴻⵖⵍⴰⵎⵜ ⵜⴰⵖⴻⵍⵏⴰⵡⵜ ⵏ ⵍⴻⵣⵣⴰⵢⴻⵔ ⵎⴳⴰⵍ ⴳⵉⵏⵢⴰ (9 ⵜⵓⴱⴻⵕ) ⴷ ⵙⵉⵏⵉⴳⴰⵍ (13 ⵜⵓⴱⴻⵕ) ⴷⴻⴳ ⵓⵙⴰⵔⵉⵔ ⵏ 5 ⵢⵓⵍⵢⵓ, ⵖⴻⴼ ⵡⴰⴽⴽⴻⵏ ⴰⵢ ⴰⵖ-ⴷ-ⵜⵅⴻⴱⴱⴻⵔ ⵜⴼⵉⴷⵉⵕⴰⵍⵉⵜ ⵜⴰⴷⵣⴰⵢⵔⵉⵜ ⵏ ⵜⵛⵉⵔⵜ ⵏ ⵓⴹⴰⵔ.
ⴰⵍⴻⵎⵎⴰⵙ ⵏ ⵓⵏⵔⴰⵔ ⵏ ⵜⴻⵖⵍⴰⵎⵜ (ⵍⴼⴰⵔⵉⵇ) ⵜⴰⵖⴻⵍⵏⴰⵡⵜ ⵢⴻⵏⵏⴰ-ⴰⵙ ⵓⵙⵍⴻⵖⵎⴰⵢ (ⵍⵎⵓⴷⴻⵔⵔⵉⴱ) ⴰⵖⴻⵍⵏⴰⵡ ⵛⵀⵔⵉⵙⵜⵉⴰⵏ ⴳⵧⵓⵔⵛⵓⴼⴼ ⴷ ⴰⴽⴽⴻⵏ ⵓⵔ ⵢⴻⵜⵜⴻⴽⴽⴰⵢ ⴰⵔⴰ ⴷⴻⴳ ⵡⵓⵔⴰⵔ ⵏ ⵓⵀⴻⵢⵢⵉ ⴷⴻⴼⴼⵉⵔ ⵎⴰ ⵥⵔⴰⵏ-ⵜ ⵢⵉⵎⵙⵓⵊⵊⵉⵢⴻⵏ (ⵟⵟⴻⴱⴱⴰ) ⴰⵢ ⵜ-ⵢⵓⴼⴰⵏ ⵓⵔ ⵢⴻⵣⵎⵉⵔ ⴰⵔⴰ ⴰⴷ ⵢⵓⵔⴰⵔ.
ⴽⴰⵙⵀⵉ ⵢⴻⵣⴳⴻⵍ ⵢⴰⴳⵉ ⵜⴰⴷⵡⵉⵍⵜ ⵜⴰⵎⴻⵣⵡⴰⵔⵓⵜ ⵏ ⵓⵙⵍⴻⵖⵎⵓ (ⴰⴷⴻⵔⵔⴻⴱ) ⵏ ⵜⴻⵖⵍⴰⵎⵜ ⵜⴰⵖⴻⵍⵏⴰⵡⵜ ⴰⵢ ⴷ-ⵢⴻⵍⵍⴰⵏ ⴰⵙⵙ ⵏ ⵍⴻⵜⵏⵉⵢⴻⵏ ⴷⴻⴳ ⵡⴰⵎⵎⴰⵙ ⴰⵜⴻⴽⵏⵉ ⴰⵖⴻⵍⵏⴰⵡ ⵏ ⵜⴼⵉⴷⵉⵕⴰⵍⵉⵜ ⵜⴰⴷⵣⴰⵢⵔⵉⵜ ⵏ ⵜⵛⵉⵔⵜ ⵏ ⵓⴹⴰⵔ ⴷⴻⴳ ⵙⵉⴷⵉ ⵎⵓⵙⴰ.
ⵙⴻⴳ ⵢⵉⴷⵉⵙ-ⵏⵏⴻⵙ, ⴰⵎⵃⴰⴷⴷⵉ ⵎⴻⵀⴷⵉ ⵣⴻⴼⴼⴰⵏⴻ (ⴰⵢ ⵢⴻⵜⵜⵓⵔⴰⵔⴻⵏ ⴷⴻⴳ ⵔⴻⵏⵏⴻⵙ, ⴷⴻⴳ ⴼⵕⴰⵏⵙⴰ) ⵢⴻⵣⴳⴻⵍ ⵜⵉⵎⵍⵉⵍⵉⵜ ⵜⴰⵏⴻⴳⴳⴰⵔⵓⵜ ⴰⵢ ⵜⵓⵔⴰⵔ ⵜⴻⵖⵍⴰⵎⵜ-ⵏⵏⴻⵙ ⵎⴳⴰⵍ ⴰⵙ ⵎⵧⵏⴰⵛⵧ (1 ⵖⴻⵔ 1) ⴰⵙⵙ ⵏ ⵍⵃⴻⴷⴷ. ⵜⵉⵎⵍⵉⵍⵉⵜ-ⴰ ⴷ ⴰⵃⵔⵉⵛ ⵙⴻⴳ ⵜⴻⵍⵖⵓⵖⴰ ⵏ ⴼⵕⴰⵏⵙⴰ ⵏ ⵜⴻⵎⵖⵓⵏⵜ 1. ⵣⴻⴼⴼⴰⵏⴻ ⵓⵔ ⵢⵓⵔⴰⵔ ⴰⵔⴰ ⵉⵎⵉ ⴰⵢ ⵢⴻⵜⵜⵡⴰⵖ, ⵓⵍⴰ ⴷ ⵏⴻⵜⵜⴰ ⵢⴻⵔⵏⴰ ⵓⵍⴰ ⴷ ⵏⴻⵜⵜⴰ ⵓⵔ ⵉⵣⴻⵎⵎⴻⵔ ⴰⵔⴰ ⴰⴷ ⵢⵓⵔⴰⵔ ⴷⴻⴳ ⵙⵏⴰⵜ-ⵏⵏⵉ ⵏ ⵜⴻⵎⵍⵉⵍⵉⵢⵉⵏ ⵏ ⵜⴰⵎⵎⵉⴷⵡⴰ ⴰⵔⴰ ⵜⵓⵔⴰⵔ ⵍⴻⵣⵣⴰⵢⴻⵔ ⴷⴻⴳ ⵡⵓⵙⵙⴰⵏ ⴰⵢ ⴷ-ⵢⴻⵜⵜⴻⴷⴷⵓⵏ.